STATUS OF KIMS EXPERIMENT

2012.11. 6 Juhee Lee and KIMS Collaboration for PPC2012 @ KIAS

2012-11-05

Contents

- Introduction to KIMS
- The latest publication Astropart. Phys. 35 (2012) 781 PRL 108 181301(2012)
- Recent results Background study, Annual Modulation, Channeling effect
- Future Plans Upgrade of PMTs and NaI(TI)
- Summary

1. The location of Y2L for WIMP search
The Muon flux in the detector room : 2.7 x 10⁻³/m²/s

2. Detector

I2 CsI(Tl) crystals, each 8 * 8 * 30 cm³ (8.7kg), w/ 3" PMTs (9269QA)

- Measured light yields for gammas: ~ 5 p.e./ keV
- SI + SD interaction search for the WIMP-nucleon scattering

Isotope	J	Abun	< S p>	< S n>
¹³³ Cs	7/2	100%	-0.370	0.003
¹²⁷	5/2	100%	0.309	0.075

- Background level : 2~ 3 cpd/kg/keV : slide #12
- Pulse shape discrimination(PSD) : slide #8

3. The shielding setup

- External gammas (<< internal BG) : HPGe measurement</p>
- Neutrons (~ zero) : ~100 days Bc501A measurement w/ the time anaylsis
- N2 gas flow inside the setup

Muon Det. : supply the veto signals to CsI(Tl) (6~7 counts /hr)

2012-11-05

4. DAQ

- Trigger condition : 4 p.e. for two PMTs
- DAQ rate : < 6 Hz.
- 400 MHz FADC (10 bit) w/ x 100 preAmp.
 & 64 MHz SADC (12 bit) w/ x 10 preAmp.
- Stability check By monitoring of temperature, electric power etc.
- CsI(Tl) temp. : 20~21.6 (depending on the positions) ± 0.2 °C

5. Calibration

Electron recoil energy calibration w/ bar type sources of ²⁴¹Am (59.54 keV γ)

and low energy efficiency check w/ 55Fe (5.9 keV x-ray)

- Nuclear recoil energy calibration (in Seoul National University)
 - For small sample crystals of each detector in Y2L
 - ²⁴¹Am/9Be 300 mCi, 2.4 MeV neutron beam (in progress)
 - Nuclear recoil event sample PDF as a function

of LMT10 (the PSD value) for each $E_{meas}(F_{NR})$

 $< t > = rac{\displaystyle \sum_{i_{\mathrm{f0}}}^{n_{\mathrm{10}\mathrm{us}}} A_i t_i}{\displaystyle \sum_{i_{\mathrm{f0}}}^{n_{\mathrm{10}\mathrm{us}}} A_i}, LMT$ 10 = log < t >

- ♦ Astropart. Phys. 35 (2012) 781 by S. C. Kim et. al.
 - Surface alphas (SA)- main backgrounds from Rn progenies.
 - W/ Radon double detector (A & B)

From SA sample events - PDF of LMT10 (F_{SA})

2012-11-05

- ✤ Phys. Rev. Lett. 108 181301(2012) by S. C. Kim et. al.
 - I year of data (Sep. 2009 Aug. 2010)
 - PMT noise rejection cuts
 - Reference data : from the PMT dummy detector
 - Different characteristics from multiple hit events(Compton scattering events) and nuclear recoil events

- Phys. Rev. Lett. 108 181301(2012)
 - By Bayesian Analysis Tool
 - The most probable ratios for F_{NR}, F_{SA} and F_{gamma} for each E_{meas}
 - Efficiency corrections for the nuclear recoil event limits

3.6-5.8 keV (2-4 keV in DAMA) 90% c.l. is 0.0098 cpd/kg/keV < 0.0183 cpd/kg/keV modulation signal of DAMA

[SI cross section limit]

[SD cross section limit]

10²

WIMP Mass (GeV)

DAMA/LIBRA

10

PICASSO

KIM5200

10³

10⁴

2011

COUPP 2001

2012-11-05

10²

10

X-section (pb)

10⁻

 10^{-2}

1

- 1. Background study by using e/γ events (by J. K. Lee in preparation)
 - ¹³⁴Cs/ ¹³⁷Cs in CsI(Tl), ²³⁸U/²³²Th/⁴⁰K in PMT glue
 - For data Energy calibration w/ 59.54 (²⁴¹Am), 605, 796 keV(¹³⁴Cs)

- Background study by using α events (by S. S. Myung submit to NIMA)
 ²³⁸U/²³²Th in CsI(Tl)
 - Better energy resolution w/ two corrections of the charge asymmetry and the saturation
 - Quenching factor measurement
 - Fit data w/ MC events generated by *f*

- Bkg. level ~ 0.008 cpd/ kg/keV
- Time analysis can underestimate
 U/Th activity.

 $f = P0(^{238}\text{U} + \dots + ^{210}\text{Po}) + P1(^{232}\text{Th} + \dots + ^{212}\text{Po}) + P2(^{238}\text{U}) + P3(^{234}\text{U} + ^{230}\text{Th} + ^{226}\text{Ra}) + P4(^{232}\text{Th}) + P5(^{228}\text{Th} + ^{224}\text{Ra}) + P6(^{210}\text{Po}).$

	Activity of Nuclide (µBq/kg)								
detector	²³⁸ U	234Ua	$222 Rn^{b}$	²¹⁰ Po	²³² Th	$^{228}\mathrm{Th}^{c}$	220 Rn ^d		
0	109.05	246.36	7.89	75.37	23.51	25.61	7.89		
1	84.79	220.59	11.91	16.82	34.77	33.21	11.73		
2	101.96	226.11	7.58	27.11	29.63	36.37	9.61		
3	15.32	45.29	5.34	23.21	7.11	17.72	6.15		
4	33.19	97.12	4.18	2.35	17.23	9.43	4.71		
5	14.99	44.68	3.05	8.05	6.53	7.40	3.70		
6	22.60	65.86	11.15	2.83	9.62	22.65	9.62		
7	73.64	165.87	7.98	1.81	11.63	21.57	8.73		
8	14.03	35.07	5.22	11.72	7.97	14.73	6.03		
9	2.11	19.60	2.11	5.79	7.26	7.25	3.63		
10	6.42	22.64	6.42	271.30	3.53	6.95	3.48		
11	7.83	19.30	0.97	28.81	4.49	3.84	1.92		

 a $^{234}\text{U}+^{230}\text{Th}+^{226}\text{Ra}.$ c $^{228}\text{Th}+^{224}\text{Ra}.$ ^b ²²²Rn and its alpha decay progenies.
 ^d ²²⁰Rn and its alpha decay progenies.

- 2. Annual Modulation (by J. H. Choi in preparation)
 - 2.5 year of data (Sep. 2009 Feb. 2012), 75.53 ton·days

- Due to an outage of electricity or an abnormal termination of computers, sometimes not a full month data

For data - PMT noise cuts and the efficiency correction (w/ multiple hit events, in next slide), No PSD

2. Annual Modulation

Cut efficiency from multiple hit data

2. Annual Modulation

Single hit events after all cuts and efficiency correction

(except Detio for its high background rate)

- Annual Modulation
 <u>3-6 keV</u>
- A_{decay} has the same decay time as
 ¹³⁴Cs. (τ : 2.98 y)
- The *bkg*. level of 2 keV bin is higher than other energy bin. More bkg. reduction is needed.
- A_{mod}
 - 1σ : 0.0008±0.0068 cpd/kg/keV
 90 % c. l : 0.0119 cpd/kg/keV
 Inconsistent with DAMA's modulation signal independent of halo model.

- 3. Channeling effect
 - IEEE TNS. 59. 5 (2012) 2346 (by J. H. Lee et. al.) and in preparation
 - R. Bernabei et. al. (Eur. Phys. J. C. 53 (2008) 205)
 - KIMS PSD method might lose some nuclear recoil events relevant to the channeling effect.
 - Channeling effect : When recoil ions go through the symmetry axes/planes

From the ion cascades after the recoil $E_{recoil} => E_{phonon} + E_{ionization} + E_{damage}$ Enhanced light yield due to the enhanced Eionization

However, gamma like events? (cf. alpha events) Stopping power may be the more important thing.

2012-11-05

- 3. Channeling effect
 - E_{meas} reproduction for a E_{recoil} in the monocrystalline CsI(Tl)
 - To know the channeling effect on E_{meas}

① By simulation (TRIM/MARLOWE) : E_{ionisation} distribution

② Scintillation efficiency model based on Birk's formula : Conversion to E_{meas}

③ PDF of E_{meas} spectrum (Landau-Gaussian function) for amorphous and monocrystalline cases

3. Channeling effect

E_{meas} spectrum for E_{recoil} w/ a small deviation
 Normalized by # of events below 10 keV

Solid -Measured total evts.

Dashed -Reproduced total evts.

Blue -Reproduced gamma contaminated evts.

- 3. Channeling effect
 - Zoom in below E_{recoil}
 - To consider symmetry axes and planes in CsI(Tl) represents data well.

<u>of the range selection</u> Blue : partial channeling <E_{meas}>_{normal} + 3σ_{normal} < E_{meas} < E_{recoil} - 2σ_{recoil}

Criteria

Red : full channeling $E_{recoil} - 2\sigma_{recoil} < E_{meas}$ $< E_{recoil} + 2\sigma_{recoil}$

Channeling effect is ~3 % in partial.
PSD cut seems to be

1. Upgrade of PMTs (tested by K. W. Kim)

(from company)

Present (9269QA)

Plan (R11065)

 Unit: mBq/PMT

 U
 Th
 K

 83
 48
 1866

1.9

32

High K	content	: at the	coupling	of Quart	z and	Borosilicate	glasses
		at the	center of	PMT boo	ly.		

33

- The Cherenkov light from ⁴⁰K decay in the glass or weak glass scintillation may be the origin of the PMT noise.
- With new PMT and suface alpha reduction from the polishing
 , we can reduce by ~ 1cpd/kg/keV
- With this lower bkg level, low mass WIMP search is possible.

PMT comparisons	R6956MOD (R6233MOD)	R11065	9269QA
120 BARS BARS	LIBRA NEW	KIMS NEW	KIMS OLD
Photocathode	SBA	Bialkali	RbCs
Window	Borosil	Quartz	Quartz
Effective Dia.	70	64	
Body	Borosil	Metal	Quartz+ Borosil
QE(500,550,600)	20,7.5,2.3	22,11,5	18,11,3
Gain	1X10 ⁶	5X10 ⁶	1X10 ⁶
U (mBq/PMT)	128	33	83
Th(mBq/PMT)	20	1.9	48
K (mBq/PMT)	97	32	1866
Dark counts (kHz)	0.5	3	0.6
Afterpulse (x 10 ⁻³)	~5.0	0.4	~10
# of pe/keV	7.7	8.8	6.1
2012-11-05	25		

2. Pure NaI(Tl)

Crystal	Exp.	U (ppt)	Th (ppt)	K (ppb)	Background Level (/keV kg day)
NaI	DAMA	2-10	1-6	~ 20	
	LIBRA	0.7-10	0.5-7.5	13	
	ANAIS			400	>10
CsI	KIMS	0.75	0.38	<10	~3

- It is possible to add several NaI(Tl) crystals to KIMS.
- We are developing low background NaI(Tl) crystals from scratch in collaboration with Signa-Aldrich company & DM-ICE group.
- Sigma-Aldrich company made first low-K NaI powder in June 2012.
- Normal NaI powder (crystal grade) ~300ppb vs.
 New one (astro grade) ~4ppb (Claimed by Sigma-Aldrich)
- We are confirming their results now.

2012-11-05

SUMMARY

- 1 year data with 100 kg CsI(Tl) data analyzed with PSD method.
 DAMA Iodine region is inconsistent with KIMS NR rate limit.
- Stringent limit of spin-dependent proton cross section is given.
- Background levels of 12 detectors are well understood.
- ◆ 2.5 year data is analyzed without PSD for the annual modulation
 → null modulation limit inconsistent with the level of DAMA's modulation amplitude : final numbers are underway.
- Channeling & quenching factor studies produced first data.
- Planned upgrades will reduce the background further.